Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 278
Filtrar
1.
J Oleo Sci ; 70(12): 1731-1740, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34759107

RESUMO

This work aims to study the influence of olive fruit maturity on physicochemical properties and antioxidant activity which determine the quality of virgin olive oils (VOO). According to the results, the values of all parameters were within the range specified by the Codex Alimentarius (2017). With the increase of fruit maturity, the oil content continued to increase until reached the maximum value (20.05%) in the 7th maturity (M7). K232, K270 and peroxide value (PV) decreased with the increase of maturity, while ΔK increased linearly with the increase of maturity. Free fatty acidity (FFA) first decreased and then increased, until reached the maximum value of (0.52 ± 0.03) % in M7. The total polyphenols (TP) and total flavonoids (TF) that characterized the antioxidant properties of olive oil increased with the increase of fruit maturity, which indicated that the oxidative stability (OS) of VOO of 'Cornicabra' increased with the increase of fruit maturity. The oleic acid (C18:1) content remained above 70 % and reached the maximum of (76.68 ± 0.17) % at M7. The values of monounsaturated fatty acids (MUFA) / polyunsaturated fatty acids (PUFA) and oleic acid (C18:1) / linoleic acid (C18:2) showed a decreasing trend with the maturity stage. Principal component analysis (PCA) showed that the quality of FFA, PV, K232, K270, TP, TF and OS were higher at the 5th maturity (M5), the quality of fatty acid were higher at M7. It can be seen from the analysis that the olive fruit maturity was an important parameter to characterize and distinguish olive oil.


Assuntos
Antioxidantes , Qualidade dos Alimentos , Frutas/química , Frutas/crescimento & desenvolvimento , Olea/química , Olea/crescimento & desenvolvimento , Azeite de Oliva/farmacologia , Fenômenos Químicos , China , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Ácido Linoleico/análise , Ácido Oleico/análise , Polifenóis/isolamento & purificação , Polifenóis/farmacologia
2.
Plant Sci ; 313: 111083, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34763868

RESUMO

The C6 aldehydes, alcohols, and the corresponding esters are the most important compounds of virgin olive oil aroma. These C6 volatile compounds are synthesized via the 13-hydroperoxide lyase (13-HPL) branch of the lipoxygenase pathway. In this investigation, a functional analysis of the olive (Olea europaea L.) 13-HPL gene by its overexpression and silencing in olive transgenic lines was carried out. With this aim, sense and RNAi constructs of the olive 13-HPL gene were generated and used for the transformation of embryogenic olive cultures. Leaves from overexpressing lines showed a slight increase in 13-HPL gene expression, whereas RNAi lines exhibited a strong decrease in their transcript levels. Quantification of 13-HPL activity in two overexpressing and two RNAi lines showed a positive correlation with levels of transcripts. Interestingly, RNAi lines showed a high decrease in the content of C6 volatiles linked to a strong increase of C5 volatile compounds, altering the volatile profile in the leaves. In addition, the silencing of the 13-HPL gene severely affected plant growth and development. This investigation demonstrates the role of the 13-HPL gene in the biogenesis of olive volatile compounds and constitutes a functional genomics study in olive related to virgin olive oil quality.


Assuntos
Lipoxigenase/biossíntese , Lipoxigenase/genética , Óleos Voláteis/análise , Óleos Voláteis/metabolismo , Olea/crescimento & desenvolvimento , Olea/genética , Azeite de Oliva/química , Frutas/enzimologia , Frutas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas
3.
Molecules ; 26(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202568

RESUMO

Olea europaea germplasm is constituted by a huge number of cultivars, each one characterized by specific features. In this context, endemic cultivars evolved for a very long period in a precise local area, developing very specific traits. These characteristics include the production and accumulation of phytochemicals, many of which are also responsible for the nutraceutical value of the drupes and of the oils therefrom. With the aim of obtaining information on the phytochemical profile of drupes of autochthonous cultivars of Cilento, Vallo di Diano and Alburni National Park, a metabolomics-based study was carried out on 19 selected cultivars. Multivariate data analysis of 1H-NMR data and 2D NMR analyses allowed the rapid identification of metabolites that were qualitatively and/or quantitatively varying among the cultivars. This study allowed to identify the cultivars Racioppella, Guglia, Pizzulella, Oliva amara, and Racioppa as the richest in health-promoting phenolic compounds. Furthermore, it showed a significant variability among the different cultivars, suggesting the possibility of using metabolic fingerprinting approaches for cultivar differentiation, once that further studies aimed at assessing the influence of growing conditions and environmental factors on the chemical profiles of single cultivars are carried out.


Assuntos
Metabolômica , Ressonância Magnética Nuclear Biomolecular , Olea/metabolismo , Compostos Fitoquímicos/análise , Itália , Olea/crescimento & desenvolvimento , Parques Recreativos
4.
Genes (Basel) ; 12(4)2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918715

RESUMO

The olive tree (Olea europaea L.) is a typical Mediterranean crop, important for olive and oil production. The high tendency to bear fruits in an uneven manner, defined as irregular or alternate bearing, results in a significant economic impact for the high losses in olives and oil production. Buds from heavy loaded ('ON') and unloaded ('OFF') branches of a unique olive tree were collected in July and the next March to compare the transcriptomic profiles and get deep insight into the molecular mechanisms regulating floral induction and differentiation. A wide set of DEGs related to ethylene TFs and to hormonal, sugar, and phenylpropanoid pathways was identified in buds collected from 'OFF' branches. These genes could directly and indirectly modulate different pathways, suggesting their key role during the lateral bud transition to flowering stage. Interestingly, several genes related to the flowering process appeared as over-expressed in buds from March 'OFF' branches and they could address the buds towards flower differentiation. By this approach, interesting candidate genes related to the switch from vegetative to reproductive stages were detected and analyzed. The functional analysis of these genes will provide tools for developing breeding programs to obtain olive trees characterized by more constant productivity over the years.


Assuntos
Etilenos/farmacologia , Flores/crescimento & desenvolvimento , Redes Reguladoras de Genes , Olea/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma/efeitos dos fármacos , Diferenciação Celular , Flores/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas , Olea/efeitos dos fármacos , Olea/genética , Melhoramento Vegetal , Proteínas de Plantas/genética , Fatores de Transcrição/genética
5.
Genes (Basel) ; 12(2)2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670559

RESUMO

Among the countries of the Mediterranean Basin, Tunisia is located at the crossroad for the immigration of several civilizations over the last two millennia, becoming a strategic place for gene flow, and a secondary center of diversity for olive species. Olive is one of the principal crop species in Tunisia and now it strongly characterizes the rural landscape of the country. In recent years, collecting missions on farm and in situ were carried out by various institutes, with special emphasis given to ex situ collections serving as a reference for the identification of olive germplasm. Simple Sequence Repeats (SSRs) represent the easiest and cheapest markers for olive genetic fingerprinting and have been the tool of choice for studying the genetic diversity of this crop in Tunisia, to resolve cases of homonymy and synonymy among the commercialized varieties, to identify rare cultivars, to improve knowledge about the genetic variability of this crop, to identify a hot spot of olive biodiversity in the Tunisian oasis of Degache, and to enrich the national reference collection of olive varieties. The present review describes the state of the art of the genetic characterization of the Tunisian olive germplasm and illustrate the progress obtained through the SSR markers, in individuating interesting genotypes that could be used for facing incoming problems determined by climate changes.


Assuntos
Variação Genética/genética , Repetições de Microssatélites/genética , Olea/genética , Impressões Digitais de DNA , Genótipo , Olea/crescimento & desenvolvimento , Tunísia
6.
Molecules ; 26(3)2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33572633

RESUMO

In the last two decades, phenolic compounds occurring in olive oils known as secoiridoids have attracted a great interest for their bioactivity. Four major olive oil secoiridoids, i.e., oleuropein and ligstroside aglycones, oleacin and oleocanthal, were previously characterized in our laboratory using reversed-phase liquid chromatography with electrospray ionization-Fourier transform-mass spectrometry (RPLC-ESI-FTMS). The same analytical approach, followed by multivariate statistical analysis (i.e., Principal Component Analysis), was applied here to a set of 60 Italian extra-virgin olive oils (EVOO). The aim was to assess the secoiridoid contents as a function of olive cultivars, place of cultivation (i.e., different Italian regions) and olive oil processing, in particular two- vs. three-phase horizontal centrifugation. As expected, higher secoiridoid contents were generally found in olive oils produced by two-phase horizontal centrifugation. Moreover, some region/cultivar-related trends were evidenced, as oleuropein and ligstroside aglycones prevailed in olive oils produced in Apulia (Southern Italy), whereas the contents of oleacin and oleocanthal were relatively higher in EVOO produced in Central Italy (Tuscany, Lazio and Umbria). A lower content of all the four secoiridoids was generally found in EVOO produced in Sicily (Southern Italy) due to the intrinsic low abundance of these bioactive compounds in cultivars typical of that region.


Assuntos
Manipulação de Alimentos , Iridoides/análise , Olea/química , Olea/crescimento & desenvolvimento , Azeite de Oliva/química , Qualidade dos Alimentos , Geografia , Iridoides/farmacologia
7.
Food Chem ; 342: 128357, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33508902

RESUMO

Phenolic compounds in virgin olive oil (VOO) contribute to its health properties, organoleptic features and oxidative stability. In this study, a total of 44 olive tree cultivars categorized by the International Olive Council to be among the most internationally widespread varieties were exhaustively and homogenously evaluated by analysis of the VOO phenolic profile during three consecutive crop seasons. Differences among cultivars resulted in up to 15-fold variations in the total phenol concentration. The 'cultivar' factor contributed the most to the variance (66.8% for total phenolic concentration) for almost all the phenols. However, the 'interannual variability' factor and the interaction 'cultivar x interannual variability' exhibited significant influences on specific phenols. According to the phenolic profile of the VOOs, we determined the presence of three groups of cultivars marked by the predominance of secoiridoid derivatives, which supports the phenolic profile as a criterion to be considered in olive breeding programs.


Assuntos
Azeite de Oliva/análise , Fenóis/análise , Cromatografia Líquida de Alta Pressão , Extração Líquido-Líquido , Olea/genética , Olea/crescimento & desenvolvimento , Olea/metabolismo , Fenóis/isolamento & purificação , Melhoramento Vegetal , Análise de Componente Principal , Estações do Ano , Espectrometria de Massas em Tandem
8.
J Sci Food Agric ; 101(5): 1944-1952, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32920857

RESUMO

BACKGROUND: Calcium is a preservative and firming agent largely used in the table olive industry. Foliar applications of calcium (as calcium chloride, CaCl2 ) before harvest have been proposed in other fruits to increase firmness and reduce physiological disorders or internal damage. However, there is still a shortage of information regarding the source, the concentration, the number, and the period of calcium application onto the canopy to get an effective response of olive quality. In this study, we aimed to investigate the effect of two concentrations of CaCl2 foliar treatments (0.5% and 1.0%), applied at different stages of fruit development (at the end of fruit set, end of pit hardening, and prior to harvesting), on olive quality for two varieties ('Manzanilla de Sevilla' and 'Ascolanta tenera'), cultivated in two different geographical areas (Spain and Italy respectively). RESULTS: The calcium concentrations applied enhanced the fruit calcium content and decreased sodium and potassium. They also improved the mechanical properties without modifying fruit morphology or cuticle thickness; nor did they cause phytotoxicity. Foliar treatments increased the oil content in the pulp (dry weight basis) and the amount of hydroxytyrosol, tyrosol, and oleuropein, among other phenols. CONCLUSION: Calcium foliar applications during fruit development effectively increase olive quality. © 2020 Society of Chemical Industry.


Assuntos
Antioxidantes/química , Cálcio/metabolismo , Frutas/crescimento & desenvolvimento , Olea/metabolismo , Azeite de Oliva/química , Antioxidantes/metabolismo , Frutas/química , Frutas/metabolismo , Itália , Olea/química , Olea/crescimento & desenvolvimento , Azeite de Oliva/metabolismo , Fenóis/química , Fenóis/metabolismo , Espanha
9.
Food Chem ; 339: 127861, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32836025

RESUMO

The role of variety and effects of pickling on Egyptian olive fruit metabolome was determined using mass spectrometry-based metabolomics targeting nutrients and bioactive metabolities. The analyzed fresh olive fruit varieties included Manzanilo, Picual, Koroneiki, and Coratina, while the pickled samples included the Manzanilo and Picual varieties. Profiling of primary and secondary metabolites resulted in the detection of 201 metabolites. Variation between varieties was mostly observed among sugars, sugar alcohols, secoiridoids, and flavonoids. An abundance of carbohydrates and O-glycosides in Picual and Manzanilo versus enrichment of secoiridoids in Picual and Coratina olives viz. dehyro-oleuropein could account for the difference in palatability and health benefits among varieties. Herein, 13 new compounds are reported in the tested varieties, of which 10 appeared exclusively in pickled samples. Generally, pickled samples were characterized by the relative abundance of secoiridoids regarded as important markers for the pickling process. Metabolites profiling provided greater insight into the pickling process as a preservation method and accounted for the improved organoleptic characters in pickled fruits.


Assuntos
Cromatografia Líquida de Alta Pressão , Manipulação de Alimentos , Frutas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Metabolômica/métodos , Olea/metabolismo , Egito , Olea/crescimento & desenvolvimento
10.
Food Chem ; 338: 127754, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32829296

RESUMO

The production of olive (Olea europaea L.) is very important economically in many areas of the world, and particularly in countries around the Mediterranean basin. Ripening-associated modifications in cell wall composition and structure of fruits play an important role in attributes like firmness or susceptibility to infestations, rots and mechanical damage, but limited information on these aspects is currently available for olive. In this work, cell wall metabolism was studied in fruits from nine olive cultivars ('Arbequina', 'Argudell', 'Empeltre', 'Farga', 'Manzanilla', 'Marfil', 'Morrut', 'Picual' and 'Sevillenca') picked at three maturity stages (green, turning and ripe). Yields of alcohol-insoluble residue (AIR) recovered from fruits, as well as calcium content in fruit pericarp, decreased along ripening. Cultivar-specific diversity was observed in time-course change patterns of enzyme activity, particularly for those acting on arabinosyl- and galactosyl-rich pectin side chains. Even so, fruit firmness levels were associated to higher pectin methylesterase (PME) activity and calcium contents. In turn, fruit firmness correlated inversely with ascorbate content and with α-l-arabinofuranosidase (AFase) and ß-galactosidase (ß-Gal) activities, resulting in preferential loss of neutral sugars from cell wall polymers.


Assuntos
Parede Celular/metabolismo , Frutas/crescimento & desenvolvimento , Genótipo , Olea/citologia , Olea/genética , Hidrolases de Éster Carboxílico/metabolismo , Frutas/metabolismo , Olea/crescimento & desenvolvimento
11.
J Sci Food Agric ; 101(9): 3981-3986, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33336798

RESUMO

BACKGROUND: Olive, as a non-climacteric fruit, is presumed to be ethylene independent with regard to ripening triggering/coordination. Nevertheless, studies have demonstrated that postharvest ethylene treatments induce changes in composition and properties also of non-climacteric fruits, including aroma profiles, a key quality parameter of extra virgin olive oils. Olive fruit of cv. 'Leccino' harvested at two distinct ripening stages (less advanced ripening, LAR; and more advanced ripening, MAR, with Jaén index of 4.58 and 5.10, respectively) were subjected to ethylene (1000 ppm in air) treatment for 24 h before oil extraction. RESULTS: Based on multivariate analysis of volatile organic compound (VOCs), the effect of ethylene treatment appeared to be more pronounced in MAR samples. However, differences in organoleptic analysis were also detected in ethylene-treated LAR olive oils. Ethylene seems to selectively affect linolenic/linoleic acid metabolism, particularly concerning the C5 pathway, and reduce specific defect-associated compounds. CONCLUSION: Exogenous ethylene applied to cv. 'Leccino' olives before processing was effective in inducing specific changes in the VOC profiles of the resulting oil. The effect was different depending on the ripening stage of the harvested olives. The lipoxygenase pathway (including the production of C5 compounds) and fermentative-related compounds appeared to be affected by the treatment. © 2020 Society of Chemical Industry.


Assuntos
Etilenos/farmacologia , Frutas/química , Frutas/crescimento & desenvolvimento , Olea/efeitos dos fármacos , Azeite de Oliva/química , Reguladores de Crescimento de Plantas/farmacologia , Compostos Orgânicos Voláteis/química , Frutas/efeitos dos fármacos , Frutas/metabolismo , Odorantes/análise , Olea/química , Olea/crescimento & desenvolvimento , Olea/metabolismo , Azeite de Oliva/isolamento & purificação , Compostos Orgânicos Voláteis/metabolismo
12.
Molecules ; 26(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375027

RESUMO

The valorization of olive pomace through the extraction of phenolic compounds at an industrial scale is influenced by several factors that can have a significant impact on the feasibility of this approach. These include the types and levels of phenolic compounds that are present, the impact that seasonal variation and cultivar type have on the phenolic compound content in both olive pomace and mill effluents and the technological approach used to process the olive crop. Chemical analysis of phenolic compounds was performed using an HPLC-diode-array detector (DAD)-qTOF system, resulting in the identification of 45 compounds in olive mill wastewater and pomace, where secoiridoids comprised 50-60% of the total phenolic content. This study examined three different factors that could impact the phenolic compound content of these processing streams, including cultivar types typically grown on local farms in Slovenia, the type of downstream processing used and seasonality effects. Olive crop varieties sourced from local farms showed high variability, and the highest phenolic content was associated with the local variety "Istrska Belica". During processing, the phenolic content was on average approximately 50% higher during two-phase decanting compared to three-phase decanting and the type of compound present significantly different. An investigation into the seasonal effects revealed that the phenolic content was 20% higher during the 2019 growing season compared to 2018. A larger sample size over additional growing seasons is required to fully understand the annual variation in phenolic compound content. The methods and results used in this study provide a basis for further analysis of phenolic compounds present in the European Union's olive crop processing residues and will inform techno-economic modelling for the development of olive biorefineries in Slovenia.


Assuntos
Olea/química , Fenóis/química , Fenóis/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Águas Residuárias/química , Fracionamento Químico/métodos , Cromatografia Líquida de Alta Pressão , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/isolamento & purificação , Sequestradores de Radicais Livres/farmacologia , Estrutura Molecular , Olea/crescimento & desenvolvimento , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Estações do Ano , Eslovênia
13.
Molecules ; 25(24)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33317191

RESUMO

In recent years, isotopic analysis has been proven a valuable tool for the determination of the origin of various materials. In this article, we studied the 18O and 13C isotopic values of 210 olive oil samples that were originated from different regions in Greece in order to verify how these values are affected by the climate regime. We observed that the δ18O isotopic values range from 19.2 ‱ to 25.2 ‱ and the δ13C values range from -32.7 ‱ to -28.3 ‱. These differences between the olive oils' isotopic values depended on the regional temperature, the meteoric water, and the distance from the sea. Furthermore, we studied the 13C isotopic values of biophenolic extracts, and we observed that they have same capability to differentiate the geographic origin. Finally, we compared the isotopic values of Greek olive oils with samples from Italy, and we concluded that there is a great dependence of oxygen isotopes on the climatic characteristics of the different geographical areas.


Assuntos
Azeite de Oliva/química , Isótopos de Carbono/análise , Clima , Grécia , Olea/química , Olea/crescimento & desenvolvimento , Azeite de Oliva/isolamento & purificação , Azeite de Oliva/normas , Isótopos de Oxigênio/análise , Fenóis , Extratos Vegetais/química , Água/química
14.
Sensors (Basel) ; 20(21)2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182272

RESUMO

Knowledge of phenological events and their variability can help to determine final yield, plan management approach, tackle climate change, and model crop development. THe timing of phenological stages and phases is known to be highly correlated with temperature which is therefore an essential component for building phenological models. Satellite data and, particularly, Copernicus' ERA5 climate reanalysis data are easily available. Weather stations, on the other hand, provide scattered temperature data, with fragmentary spatial coverage and accessibility, as such being scarcely efficacious as unique source of information for the implementation of predictive models. However, as ERA5 reanalysis data are not real temperature measurements but reanalysis products, it is necessary to verify whether these data can be used as a replacement for weather station temperature measurements. The aims of this study were: (i) to assess the validity of ERA5 data as a substitute for weather station temperature measurements, (ii) to test different machine learning models for the prediction of phenological phases while using different sets of features, and (iii) to optimize the base temperature of olive tree phenological model. The predictive capability of machine learning models and the performance of different feature subsets were assessed when comparing the recorded temperature data, ERA5 data, and a simple growing degree day phenological model as benchmark. Data on olive tree phenology observation, which were collected in Tuscany for three years, provided the phenological phases to be used as target variables. The results show that ERA5 climate reanalysis data can be used for modelling phenological phases and that these models provide better predictions in comparison with the models trained with weather station temperature measurements.


Assuntos
Aprendizado de Máquina , Olea/crescimento & desenvolvimento , Tempo (Meteorologia) , Mudança Climática , Itália , Estações do Ano , Temperatura
15.
J Agric Food Chem ; 68(44): 12221-12228, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33099995

RESUMO

The content of glutathione, ascorbate (ASC), and the enzymatic antioxidants, superoxide dismutase and catalase, and components of the ascorbate-glutathione cycle were investigated in the olive fruit (cv. Picual) selected at the green, turning, and mature ripening stages. The changes observed in total and reduced glutathione (GSH), oxidized glutathione (GSSG), the ratio GSH/GSSG, ASC, and antioxidant enzymes (mainly superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase) indicate a shift to a moderate cellular oxidative status during ripening and suggest a role for antioxidants in the process. The antioxidant composition of olive oils obtained from the olive fruits of the study was investigated. A model is proposed for the recycling of antioxidant polyphenols mediated by endogenous molecular antioxidants in the olive fruit.


Assuntos
Antioxidantes/análise , Ácido Ascórbico/análise , Frutas/química , Glutationa/análise , Olea/crescimento & desenvolvimento , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Catalase/análise , Catalase/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Glutationa/metabolismo , Glutationa Redutase/análise , Glutationa Redutase/metabolismo , Olea/química , Olea/metabolismo , Azeite de Oliva/química , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo , Superóxido Dismutase/análise , Superóxido Dismutase/metabolismo
16.
Sci Rep ; 10(1): 15762, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978460

RESUMO

Alternate bearing (AB) refers to the tendency of trees to have an irregular crop load from 1 year (ON) to the next year (OFF). Despite its economic importance, it is not fully understood how gene networks and their related metabolic pathways may influence the irregular bearing in olive trees. To unravel molecular mechanisms of this phenomenon in olive (cv. Conservalia), the whole transcriptome of leaves and buds from ON and OFF-trees was sequenced using Illumina next generation sequencing approach. The results indicated that expressed transcripts were involved in metabolism of carbohydrates, polyamins, phytohormones and polyphenol oxidase (POD) related to antioxidant system. Expression of POD was increased in leaf samples of ON- versus OFF-trees. The expression pattern of the greater number of genes was changed more in buds than in leaves. Up-regulation of gene homologues to the majority of enzymes that were involved in photorespiration metabolism pathway in buds of ON-trees was remarkable that may support the hypotheses of an increase in photorespiratory metabolism in these samples. The results indicated changes in expression pattern of homologous to those taking part of abscisic acid and cytokinin synthesis which are connected to photorespiration. Our data did not confirm expression of homologue (s) to those of chlorogenic acid metabolism, which has been addressed earlier that have a probable role in biennial bearing in olive. Current findings provide new candidate genes for further functional analysis, gene cloning and exploring of molecular basses of AB in olive.


Assuntos
Flores/genética , Perfilação da Expressão Gênica , Olea/genética , Folhas de Planta/genética , Árvores/genética , Flores/crescimento & desenvolvimento , Olea/crescimento & desenvolvimento , Olea/metabolismo , RNA-Seq , Árvores/crescimento & desenvolvimento
17.
Molecules ; 25(10)2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32456326

RESUMO

The phenolic fraction of the extra virgin olive oil (EVOO) has been studied over the past two decades because of its important health protective properties. Numerous studies have been performed in order to clarify the most crucial factors that affect the concentration of the EVOO's phenolic fraction and many contradictory results have been reported. Having as target to maximize the phenolic content of EVOO and its healthy properties we investigated the impact of harvest time, malaxation temperature, and malaxation duration on the concentration of individual phenols in extra virgin olive oil. Olive oil was prepared in a lab-scale olive mill from different varieties in Greece. The extraction process for cultivar (cv) Koroneiki samples was performed at five different harvest periods from the same trees with three different malaxation temperatures and five different malaxation duration times (N = 75). Similar types of experiments were also performed for other varieties: cv Athenolia (N = 20), cv Olympia (N = 3), cv Kalamata (N = 3), and cv Throubolia Aegean (N=3) in order to compare the changes in the phenolic profile during malaxation. The quantitative analysis of the olive oil samples with NMR showed that the total phenolic content has a negative correlation with the ripening degree and the malaxation time. The NMR data we collected helped us to quantitate not only the total phenolic content but also the concentration of the major phenolic compounds such as oleocanthal, oleacein, oleokoronal, and oleomissional. We noticed different trends for the concentration of these phenols during malaxation process and for different malaxation temperatures. The different trends of the concentration of the individual phenols during malaxation and the completely different behavior of each variety revealed possible biosynthetic formation steps for oleocanthal and oleacein and may explain the discrepancies reported from previous studies.


Assuntos
Olea/química , Azeite de Oliva/química , Fenóis/química , Óleos de Plantas/química , Aldeídos/química , Aldeídos/isolamento & purificação , Monoterpenos Ciclopentânicos/química , Monoterpenos Ciclopentânicos/isolamento & purificação , Grécia , Olea/crescimento & desenvolvimento , Fenóis/isolamento & purificação , Temperatura
18.
PLoS One ; 15(4): e0231956, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32324774

RESUMO

Global warming is predicted to have a negative effect on plant growth due to the damaging effect of high temperatures. In order to address the effect of high temperature environments on olive oil yield and quality, we compared its effect on the fruit development of five olive cultivars placed in a region noted for its high summer temperatures, with trees of the same cultivars placed in a region of relatively mild summers. We found that the effects of a high temperature environment are genotype dependent and in general, high temperatures during fruit development affected three important traits: fruit weight, oil concentration and oil quality. None of the tested cultivars exhibited complete heat stress tolerance. Final dry fruit weight at harvest of the 'Barnea' cultivar was not affected by the high temperature environment, whereas the 'Koroneiki', 'Coratina', 'Souri' and 'Picholine' cultivars exhibited decreased dry fruit weight at harvest in response to higher temperatures by 0.2, 1, 0.4 and 0.2 g respectively. The pattern of final oil concentration was also cultivar dependent, 'Barnea', 'Coratina' and 'Picholine' not being affected by the high temperature environment, whereas the 'Koroneiki' and 'Souri' cultivars showed a decreased dry fruit oil concentration at harvest under the same conditions by 15 and 8% respectively. Regarding the quality of oil produced, the 'Souri' cultivar proved more tolerant to a high temperature environment than any other of the cultivars analyzed in this study. These results suggest that different olive cultivars have developed a variety of mechanisms in dealing with high temperatures. Elucidation of the mechanism of each of these responses may open the way to development of a variety of olives broadly adapted to conditions of high temperatures.


Assuntos
Qualidade dos Alimentos , Azeite de Oliva/metabolismo , Temperatura , Clima , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Genótipo , Olea/genética , Olea/crescimento & desenvolvimento , Olea/metabolismo
19.
Nat Plants ; 6(3): 209-214, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32170288

RESUMO

In the upcoming United Nations Decade on Ecosystem Restoration, a global challenge for scientists and practitioners will be to develop a well-functioning seed production sector on the basis of a sound species-selection process1. To balance crop production with biodiversity functions in Mediterranean woody crops, agroecological practices2 suggest the need to move towards the establishment of herbaceous ground covers3-5. However, establishing such plants requires a supply of suitable native seeds, which is currently unavailable. Here, we present a comprehensive process for selecting regionally adapted species that also emphasizes considerations for seed production6. Using olive groves as a target system, we found that research on ground covers for regenerative agriculture has largely overlooked native species at the expense of commercial and ill-suited varieties. Our assessment of native annuals showed that 85% of the grasses and forbs evaluated exhibit a suite of ecological and production traits that can be tailored to meet the requirements of farmers, seed producers and environmental agencies. These findings suggest that many native species are neglected in agronomic research, despite being potentially suitable for ground covers and for supporting a nature-based solution7 in restoration practice. The framework used here may be applied in other agroecosystems to follow global greening initiatives and to support native seed production to scale up restoration8-10.


Assuntos
Produção Agrícola/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Olea/crescimento & desenvolvimento , Dispersão Vegetal , Região do Mediterrâneo , Espanha
20.
Microb Pathog ; 143: 104134, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32169494

RESUMO

Soil actinomycetes are a highly common group of bacteria and frequently studied as having secondary metabolites in the potential of producing the most preferred antagonistic content. Considering the continuous variation in soil structure, there is a potential for encountering different organisms. Almost all of antibiotic contents are produced by these bacteria and their importance increase. In this study, eleven different actinomycetes strain were isolated from the rhizosphere of olive trees investigated for their plant growth-promoting (PGP) traits including ammonia production, indole-3-acetic acid production, phosphate solubilization, and siderophore production with antagonistic activities against a set of pathogenic bacteria, fungi, and yeasts. All actinomycetes were identified according to 16S rRNA regions were recognized in four different Streptomyces species but according to fatty acid analysis, there would be at least six different organisms. The potential for antagonistic and plant growth-promoting traits of olive tree rhizosphere actinomycetes were a promising tool for agricultural applications and clinical antibiotic resistance. Differentiation of organisms with the antagonism of pathogenic activities and PGP features could be a definitive method for future studies.


Assuntos
Actinobacteria/genética , Interações Hospedeiro-Patógeno , Olea/microbiologia , Doenças das Plantas/microbiologia , Streptomyces/genética , Actinobacteria/isolamento & purificação , Ácidos Graxos/metabolismo , Ácidos Indolacéticos/metabolismo , Olea/crescimento & desenvolvimento , Olea/metabolismo , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Rizosfera , Streptomyces/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...